Walter Gerych is a postdoctoral associate at MIT CSAIL. He earned his Ph.D. and M.S. in Data Science from Worcester polytechnic Institute . Walter’s research focuses primarily on designing ML and deep learning systems that are robust to labeling and sampling errors and biases. His primary application areas revolve around mobile sensor time series for human activity recognition and mobile healthcare.
Olawale (Wale) Salaudeen is a postdoctoral associate at MIT CSAIL starting in the fall of 2024. He completed his PhD in Computer Science at the University of Illinois at Urbana-Champaign, where he was affiliated with the Stanford Trustworthy AI Research (STAIR) Lab. Wale’s research focuses on developing machine learning methods for reliable and trustworthy real-world decision-making, specifically robust generalization, domain adaptation, and evaluation under distribution shifts. His work spans diverse applications, including neuroscience/neuroimaging, healthcare, and algorithmic fairness.
Aparna Balagopalan is a fifth year PhD student in EECS at MIT. Her research broadly focuses on developing fair and robust models by re-evaluating and surfacing assumptions in machine learning-based measurements in socially-relevant contexts like healthcare. Prior to this, she received a Master’s degree from the University of Toronto and a BTech degree from IIT Guwahati. She currently holds an Amazon Doctoral Fellowship from MIT’s Science Hub.
Hammaad is a fifth year PhD student at the Institute for Data Systems and Society (IDSS) at MIT. His work focuses on questions at the intersection of AI and healthcare equity, and aims to understand how the increased use of machine learning in healthcare can impact existing disparities. He is especially passionate about investigating ways in which we can use AI to create more equitable systems.
Vinith is a fourth year PhD student at MIT EECS, IMES, CSAIL, and LIDS. His research focuses on the theory and practice of differential privacy, algorithmic fairness, distributive justice, and optimization in machine learning. He completed his Masters in Computer Science from the University of Toronto and his Bachelors in Computing from Queen’s University. He is currently a Wellcome Trust Fellow at MIT and previously was an Ethics of AI Fellow at the University of Toronto.
Haoran is a fourth year PhD student in EECS at MIT. He is generally interested in building robust machine learning models that maintain their performance and fairness across out-of-distribution environments, as well as applying such models to the healthcare setting. Haoran previously received his M.Sc. at the University of Toronto under the co-supervision of Dr. Marzyeh Ghassemi and Dr. Quaid Morris, and his B.Eng. from McMaster University.
Hyewon Jeong is a Ph.D. student in EECS at MIT. Her primary research focus has been on applying machine learning models to solve real-world clinical problems, specifically tasks from time-series EHR data, signal data to multi-modal data. She is also interested in solving robustness, fairness, and causal inference applied to clinical and biomedical problems. Hyewon received B.S. in biological sciences and M.S. in Computer Science from Korea Advanced Institute of Science and Technology, M.D. in Yonsei University.
Qixuan (Alice) Jin is a fourth year EECS PhD student doing research in Machine Learning + Healthcare. She is broadly interested in how to incorporate expert domain knowledge in data-driven models within the context of medical and biological datasets. Alice completed her B.S. in Computer Science in 2021 at Caltech. During her time at Caltech, she did research related to COVID-19 time series prediction with Professor Yaser Abu-Mostafa.
Yuxin Xiao is a Ph.D. student at MIT IDSS. Yuxin obtained his M.S. in Machine Learning at Carnegie Mellon University and his B.S. in Computer Science and B.S. in Statistics and Mathematics at the University of Illinois at Urbana-Champaign.
Eileen Pan is a 2nd-year EECS PhD student at MIT co-advised by Marzyeh Ghassemi and Ashia Wilson. Her research focuses on developing scalable ways to audit and mitigate bias in deep learning models, with applications to healthcare. She also completed her BS in Computation and Cognition at MIT as a Questbridge Scholar. Her work is supported by the Jameel Clinic Fellowship and NSF Graduate Research Fellowship.
Kimia is a PhD student at MIT EECS. Her research focuses on understanding how self-supervised pre-training strategies represent data to build models that generalize well out-of-distribution, as well as developing post-training strategies that ensure safety of models. She previously received her MSc at the University of Toronto and her BSc from Sharif University of Technology.
Isha is a PhD student at MIT EECS and CSAIL where she is co-advised by Professor Marzyeh Ghassemi and Professor Yoon Kim. Her research focuses on building language models that can learn to reason like humans, as well as deployable, robust, and ethical AI. She graduated with her B.A. in Applied Mathematics and Computer Science from Harvard University in 2023, where she was an HBS Technology Innovation Fellow. She currently holds the MIT Great Educators Fellowship and the National Science Foundation’s Graduate Research Fellowship.
Kumail is pursuing his PhD in EECS at MIT. He is supported by the Jameel Clinic Fellowship. His primary focus lies in developing trustworthy and adaptable machine learning models. He is interested in designing ways to evaluate models under distribution shifts arising in real-world healthcare applications. Before MIT, he completed his BS in Electrical and Computer Engineering at Cornell University, and his MS in Computer Science at King Abdullah University of Science and Technology (KAUST), where he conducted computer vision research with Professor Bernard Ghanem. You will catch him riding his road bike around Massachusetts in his free time.
Cassandra is a second year Ph.D. student in the Medical Engineering and Medical Physics (MEMP) program at Harvard and MIT. Cassandra’s research focuses on equitable machine learning models that target underserved health conditions. She is particularly interested in utilizing regularly captured healthcare data to create models that can be applied both in and out of hospital settings. She previously completed her B.S. in Computer Science and Biomedical Engineering at Johns Hopkins.
Abinitha is a first year EECS Ph.D. student at MIT. Her research focuses on mitigating bias and ensuring trustworthiness in language models. She is particularly interested in algorithmic fairness and robustness in sensitive domains like healthcare. She completed her B.S.E. in Operations Research and Financial Engineering at Princeton University.
Yuexing Hao is an IvyPlus Exchange Ph.D. Scholar and Ph.D. student at Cornell University. She earns two Computer Science degrees from Rutgers University (B.A.) and Tufts University (M.S). During her study, Yuexing won the NCWIT AIC Collegiate Award (Honorable Mention), second prize in IEEE Communication Society Student Competition, ACM SIGCHI 2023 Gary Marsden Travel Award, Meritorious Prize in the 2020 Interdisciplinary Contest in Modeling (ICM), and Graduate Student Research Competition Award at Tufts University. Yuexing also published several papers at CHI Conference on Human Factors in Computing Systems, Intelligent System Conference, AAAI, and Bioinformatics. She reviewed top-venue conferences serving as registration co-chair for FAccT, associate chair for CSCW and CHI. Currently, her research focus is on Health Intelligence, Human-Computer Interaction, and AI.
Lena is a 4th-year PhD exchange student at MIT LIDS as part of the Wallenberg AI, Autonomous Systems, and Software Program (WASP) research stint. She is currently pursuing her PhD at Chalmers University of Technology in Sweden. Her research focuses on the intersection of machine learning and healthcare, with a particular interest in predictions with missing values at test time, time series, and causality. She aims to develop interpretable and accurate models to support clinical decision-making. Prior to her PhD, she completed a Master’s degree in Information Systems and Management at Karlsruhe Institute of Technology (KIT) in Germany.
Yan is concurrently a Master of Engineering student at MIT EECS Department. She is interested in research topics around general AI alignment areas such as model fairness, robustness and interpretability. She completed her B.S. in Computer Science and Mathematics at MIT.
George Abu Daoud is a M.Eng. student at MIT EECS. His research interests include Machine Learning, Statistics, and Data Science. George received his B.Sc. in Computer Science and Engineering from MIT. Hobbies include music, reading, and watching cat videos.
Anas is an M.Eng. student in EECS. His research interests include robust deep learning, algorithmic complexity, learning theory, and computational number theory. Anas completed his B.S. in mathematics and EECS at MIT. In his free time, he enjoys soccer, hiking, cooking, and some social deduction games.
Name | Healthy ML Position | Current Position |
---|---|---|
Xuhai Orson Xu | Postdoc | Assistant Professor at Columbia University |
Jiacheng Zhu | Postdoc | |
Nathan Ng | Ph.D. Student | Postdoc at NYU |
Taylor Killian | Ph.D. Student | Postdoc Research Scientist at Apple |
Sindhi C. M. Gowda | Ph.D. Student | |
Intae Moon | Ph.D. Student | Postdoc at Harvard University |
Kai Wang | Postdoc | Assistant Professor at Georgia Tech |
Tom Hartvigsen | Postdoc | Assistant Professor at UVA |
Saadia Gabriel | Postdoc | Assistant Professor at UCLA |
Bret Nestor | Ph.D. Student | Postdoc at UW |
Elizabeth Bondi-Kelly | Postdoc | Assistant Professor at UMich |
Swami Sankaranarayanan | Postdoc | Researcher at Sony AI |
Mingying Yang | MEng Student | Research Engineer at Apple |
Neha Hulkund | MEng Student | PhD at MIT |
Laleh Seyyed-Kalantari | Postdoc | Researcher at Mount Sinai Hospital |
Shalmali Joshi | Postdoc | Postdoc at Harvard University |
Minfan Zhang | MSc Student | |
Natalie Dullerud | MSc Student | PhD at Stanford |
Amy Lu | MSc Student | PhD at UC Berkeley |
Shirly Wang | MScAc Student | Research Scientist at Layer 6 AI |
Seung-Eun Yi | MScAc Student | Research Scientist at Layer 6 AI |
Karsten Roth | Visiting Researcher | PhD at University of Tübingen |
Victoria Cheng | Undergrad | Machine Learning Engineer at Snap Inc. |
Shrey Jain | Undergrad | BASc Eng Sci at University of Toronto |